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Background

Suppose that a force of "hiders" has an area A avail-

able within which to hide from a force of "seekers." Each side

can distribute its forces arbitrarily within A. If the density

of seeker effort at the location of any given hider is s, then

the hider is assumed to escape with probability f (s) , where

f(s) is some decreasing, convex function of s. The hiders

want to maximize the probability of escape, and the seekers

want to minimize it. If no further constraints are imposed, it

is not difficult to show that each side should allocate its

forces uniformly throughout the region, and that the escape

probability as the value of a two-person zero sum game is

f(S/A), where S is the total amount of seeker effort. Our

object in this report is to investigate the impact of constraints

on the motion of the hiders. Specifically, we want to investi-

gate what happens if the hiders are required to visit a

particular point (a port, typically) on the boundary of A

every t, while never travelling at a speed exceeding v.
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We can anticipate that the escape probability will be f (S/A)

when the product vt is "large," and when vt is "small."

In order to simplify the analysis, the following assump-

tions are made

:

a) the region is a circular sector (wedge)

b) the revisit point is at the apex of the wedge

c) f (s) = 1/(1 + s) .

In Figure 1, the heaviness of the shading indicates the density

of seeker effort for a typical seeker strategy. Note that the

effort is dense in the vicinity of the apex, since the hiders

must all transit through that area in order to visit the apex.

A typical hider "tour" is shown. The hider basically picks

a direction at random and a range from a distribution introduced

in the next section, goes to the point and stays in the vicinity

of that point until it is time to return to the apex. Each

hider picks an independent tour after each visit to the apex.

Results

Let

9 = angle of the circular sector

r _ = radius of the circular sectorsec
2

A = © rsec/
2 = area of sector

v = hider speed

t = revisit time

rmax
= vt//2 = maximum range of the hiders

2



S = total amount of seeker effort

Y = S/(0 r
2

)max

U = r /r
sec max

The value of the game (escape probability) depends on the

two dimensionless quantities Y (a normalized amount of seeker

effort) and U (a normalized sector size); call it P(U,Y).

Figure 2 shows P(U,Y) as a function of Y for several values

of U. Since U = 1 corresponds to the case where the maximum

range of the hiders is equal to the sector radius, all values

of U > 1 follow the same curve as for U = 1 . The curves

in Figure 2 are equivalent to:

(1) Let V = 1 - \/l- U
2

Case 1: for Y <_ V /6 , P(U,Y) = 1 - /2Y/3

(2)
2 2

Case 2: for Y > V /6, P(U,Y) = V/(Y + U /2)

Standard limiting operations show that

lim P(U,Y) =

r +0
max

(3)

lim P(U,Y) = 1/(1 + S/A) ,

max

as anticipated



FIGURE I

ILLUSTRATING A HIDER PATH AND A SHADED SEEKER DENSITY
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For example, suppose

max

'sec

S

= 50 00 mi

= 1000 mi

= (25 hr holding time) (10 sq mi/hr search rate)

5
= 25 x 10 sq mi

0=1 radian

Then Y = .1, U = .2, and V = .0 2. This is Case 2,

and P(U,Y) = .164. If r were "very large," we would have
\ / max

P(U,Y) = 1/6.

The optimal strategy for the hiders is to pick an angle

at random and a range from the distribution F(urmax ), where

(4) F(u) =
\

(u-V)

*

2V(l-u)

for < u < V

for V < u < U ,

and where V is as earlier defined. Qualitatively, the hider

have a tendency to pick large ranges, with Vr being

the smallest range picked.

Let y(u) be the density of seeker effort at range

ur , let T = v^Y, and let K = (Y + U
2
/2)/[V(l - V/3) ] .max

Then the optimal density y(u) is



(5) Case 1

/t7u - 1

y(u) =
\

for u < T

for u > T

(6) Case 2 y(u) = <

K /v/u ~ 1 for u £ V

K - 1 for u > V

Qualitatively, the searchers have a tendency to cluster near

2
the apex, particularly in Case 1, (Y V /6) . The density

is actually unbounded near the apex; that is, lim _ ~ y(u) = =°

The proof that the functions given above represent

the value of the game and the optimal strategies for the two

sides is the subject of the next section.

Exact Statement of the Problem

Let u be range from the apex measured in units of

r , so that the hiders must pick a range u for each tour
max r

in the interval [0,U]. Let F(v) be the C.D.F. used by the

hiders. Then the hiders spend G(u) of their time within u

of the apex, where

(7) G(u) = F(u) + u(l - F(u) ) .



Formula (7) is true because a hider will be within u of

the apex throughout its patrol period if it picks a range

smaller than or equal to u, and will spend a fraction u of

its patrol time within u of the apex even if it picks a

range greater than u. F(u) can be any C.D.F. defined on

[0,U], but G(u) cannot, which is what makes the problem non-

trivial .

Since y(u) is the density of seeker effort at range u,

the escape probability for a hider averaged over time is

U
i

(8) A(F,y) = / (1 + y(u) )

X
dG(u)

,

where
U

(9) / y(u) u du = Y and y(u) >

Equations (7), (8), and (9) define a two-person zero sum game

where the hiders select a C.D.F. F(u) on [0,U] and the

seekers select y(u) according to (9) . We next show that

the results quoted earlier constitute a saddle point of this

game

.

Proof of Results

The results shown below were discovered by using the

theory of optimal control, but we will prove that the game

has been solved by showing that the solution offered is a

saddle point. While this is analytically simpler, it will

not motivate the results.



We must show that

max A(F,v*) = P(U,Y) = min A(F*,y) ,

F y

where F* and y* are the functions given earlier

Proof that P(U,Y)

Let G*(u)

= min A(F*,y)

y

= F*(u) + u(l - F*(u)). Using (1) and (4),

F*(U) = 1/ so also G*(U) = 1. After substitution and simplifi-

cation,

G*(u) =

u

2 2
u + V

2V

for u < V

for V < u < U

Let g(u) = (d/du)G (u) . Then we have

U

A(F*,y) =
/ g(u)/(l + y(u)) du ,

where

g(u) =

1 for u < V

u/V for V < u < U

Consider the Lagrangian



h(y) =
/

u

r^rW + * u y^ du ,

which is to be minimized subject to y(u) _> 0. We minimize

for each u separately by differentiation, obtaining the

minimizing function y:

y(u) = g(u)
Xu

>)*

where + indicates that y(u) is to be rather than negative

If XV < 1, y(u) > for all u, and

u
(10) A(F*,y) = / / Aug(u) du

= /I
r V
/ /u du

-0

u
/ u/7V du
V

= /X/V | V
2

+ (U2 - V
2
)/2

= /VV [V
2
/6 + U

2
/2]

If y is to be feasible, we must also have

(11)
U ^ V U

Y = / uy(u)du = / /~u7T du + / —H— du - U
2
/2

V / XV

= —^- [V
2
/6 + U

2
/2] - U 2/2

/Tv
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Since U
2

+ V
2

= 2V, V
2
/6 + U

2
/2 = V(l - V/3) . Solving

(11) for /T and then substituting /T in (10) , we obtain

A(F*,y) = P(U,Y), and also AV < 1 if and only if Y > V
2
/6

.

If AV _> 1, y(u) = for u >_ 1/X. Let T = 1/A. Then

(12) A(F*,y) = / /Tu du+l-T=l- T/3
,

and if y is to be feasible we must have

T
(13) Y = / u(/l/Au - l)du = 2T

2
/3 - T

2
/2 = T

2
/6

Solving (13) for T and substituting in (12) , we obtain

A(F*,y) = P(U,Y), and also XV _> 1 if and only if Y <_ V /6 .

According to Everett's theorem [1] on Lagrange multipliers,

A(F*,y) >_ A(F*,y) , so we have shown that P(U,Y) = min A(F*,y) .

We also note that y = y*.

Proof that P(U,Y) = max A(F,y*)
F

Since y*(u) is dif ferentiable , we can integrate

A(F,y*) by parts to obtain

G(U'
U

where

A(F,y*) =
1 ^ yi (J)

" / G(u) B(u)du ,

B(u) = - (^ y*(u)j/(l + y*(u))
2

.
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In both Cases I and II, B(u) _> for u £ V, and B(u) =0

for u > V (note T < V in (5) ) . Since G(u) = u + F(u) (1-u) > u,

A(F 'y*» 1 1 + vmu) -
/

^(ujdu

But it is also true that g*( u )
= u f°r u <_ V, so

A(F,y*) A(F*,y*) for any F. But we already know

A(F*,y*) = P(U,Y), so the proof is complete.
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